3.2901 \(\int \frac {(2+3 x)^{3/2} (3+5 x)^{3/2}}{(1-2 x)^{3/2}} \, dx\)

Optimal. Leaf size=157 \[ \frac {139}{50} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )+\frac {(3 x+2)^{3/2} (5 x+3)^{3/2}}{\sqrt {1-2 x}}+\frac {9}{5} \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}+\frac {139}{10} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}+\frac {4621}{50} \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right ) \]

[Out]

4621/150*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)+139/150*EllipticF(1/7*21^(1/2)*(1-2*x)
^(1/2),1/33*1155^(1/2))*33^(1/2)+(2+3*x)^(3/2)*(3+5*x)^(3/2)/(1-2*x)^(1/2)+9/5*(3+5*x)^(3/2)*(1-2*x)^(1/2)*(2+
3*x)^(1/2)+139/10*(1-2*x)^(1/2)*(2+3*x)^(1/2)*(3+5*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 157, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {97, 154, 158, 113, 119} \[ \frac {(3 x+2)^{3/2} (5 x+3)^{3/2}}{\sqrt {1-2 x}}+\frac {9}{5} \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}+\frac {139}{10} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}+\frac {139}{50} \sqrt {\frac {11}{3}} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )+\frac {4621}{50} \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x)^(3/2)*(3 + 5*x)^(3/2))/(1 - 2*x)^(3/2),x]

[Out]

(139*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/10 + (9*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*(3 + 5*x)^(3/2))/5 + ((2 +
 3*x)^(3/2)*(3 + 5*x)^(3/2))/Sqrt[1 - 2*x] + (4621*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33
])/50 + (139*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/50

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rubi steps

\begin {align*} \int \frac {(2+3 x)^{3/2} (3+5 x)^{3/2}}{(1-2 x)^{3/2}} \, dx &=\frac {(2+3 x)^{3/2} (3+5 x)^{3/2}}{\sqrt {1-2 x}}-\int \frac {\sqrt {2+3 x} \sqrt {3+5 x} \left (\frac {57}{2}+45 x\right )}{\sqrt {1-2 x}} \, dx\\ &=\frac {9}{5} \sqrt {1-2 x} \sqrt {2+3 x} (3+5 x)^{3/2}+\frac {(2+3 x)^{3/2} (3+5 x)^{3/2}}{\sqrt {1-2 x}}+\frac {1}{25} \int \frac {\left (-\frac {4065}{2}-\frac {6255 x}{2}\right ) \sqrt {3+5 x}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx\\ &=\frac {139}{10} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}+\frac {9}{5} \sqrt {1-2 x} \sqrt {2+3 x} (3+5 x)^{3/2}+\frac {(2+3 x)^{3/2} (3+5 x)^{3/2}}{\sqrt {1-2 x}}-\frac {1}{225} \int \frac {\frac {263295}{4}+\frac {207945 x}{2}}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx\\ &=\frac {139}{10} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}+\frac {9}{5} \sqrt {1-2 x} \sqrt {2+3 x} (3+5 x)^{3/2}+\frac {(2+3 x)^{3/2} (3+5 x)^{3/2}}{\sqrt {1-2 x}}-\frac {1529}{100} \int \frac {1}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx-\frac {4621}{50} \int \frac {\sqrt {3+5 x}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx\\ &=\frac {139}{10} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}+\frac {9}{5} \sqrt {1-2 x} \sqrt {2+3 x} (3+5 x)^{3/2}+\frac {(2+3 x)^{3/2} (3+5 x)^{3/2}}{\sqrt {1-2 x}}+\frac {4621}{50} \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )+\frac {139}{50} \sqrt {\frac {11}{3}} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.24, size = 110, normalized size = 0.70 \[ \frac {4655 \sqrt {2-4 x} \operatorname {EllipticF}\left (\sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right ),-\frac {33}{2}\right )-30 \sqrt {3 x+2} \sqrt {5 x+3} \left (30 x^2+106 x-253\right )-9242 \sqrt {2-4 x} E\left (\sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right )|-\frac {33}{2}\right )}{300 \sqrt {1-2 x}} \]

Antiderivative was successfully verified.

[In]

Integrate[((2 + 3*x)^(3/2)*(3 + 5*x)^(3/2))/(1 - 2*x)^(3/2),x]

[Out]

(-30*Sqrt[2 + 3*x]*Sqrt[3 + 5*x]*(-253 + 106*x + 30*x^2) - 9242*Sqrt[2 - 4*x]*EllipticE[ArcSin[Sqrt[2/11]*Sqrt
[3 + 5*x]], -33/2] + 4655*Sqrt[2 - 4*x]*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2])/(300*Sqrt[1 - 2*x]
)

________________________________________________________________________________________

fricas [F]  time = 0.63, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (15 \, x^{2} + 19 \, x + 6\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1}}{4 \, x^{2} - 4 \, x + 1}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(3/2)*(3+5*x)^(3/2)/(1-2*x)^(3/2),x, algorithm="fricas")

[Out]

integral((15*x^2 + 19*x + 6)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(4*x^2 - 4*x + 1), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (5 \, x + 3\right )}^{\frac {3}{2}} {\left (3 \, x + 2\right )}^{\frac {3}{2}}}{{\left (-2 \, x + 1\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(3/2)*(3+5*x)^(3/2)/(1-2*x)^(3/2),x, algorithm="giac")

[Out]

integrate((5*x + 3)^(3/2)*(3*x + 2)^(3/2)/(-2*x + 1)^(3/2), x)

________________________________________________________________________________________

maple [C]  time = 0.02, size = 145, normalized size = 0.92 \[ -\frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}\, \left (-13500 x^{4}-64800 x^{3}+48030 x^{2}+125130 x -9242 \sqrt {2}\, \sqrt {5 x +3}\, \sqrt {3 x +2}\, \sqrt {-2 x +1}\, \EllipticE \left (\frac {\sqrt {110 x +66}}{11}, \frac {i \sqrt {66}}{2}\right )+4655 \sqrt {2}\, \sqrt {5 x +3}\, \sqrt {3 x +2}\, \sqrt {-2 x +1}\, \EllipticF \left (\frac {\sqrt {110 x +66}}{11}, \frac {i \sqrt {66}}{2}\right )+45540\right )}{300 \left (30 x^{3}+23 x^{2}-7 x -6\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x+2)^(3/2)*(5*x+3)^(3/2)/(-2*x+1)^(3/2),x)

[Out]

-1/300*(3*x+2)^(1/2)*(5*x+3)^(1/2)*(-2*x+1)^(1/2)*(4655*2^(1/2)*(5*x+3)^(1/2)*(3*x+2)^(1/2)*(-2*x+1)^(1/2)*Ell
ipticF(1/11*(110*x+66)^(1/2),1/2*I*66^(1/2))-9242*2^(1/2)*(5*x+3)^(1/2)*(3*x+2)^(1/2)*(-2*x+1)^(1/2)*EllipticE
(1/11*(110*x+66)^(1/2),1/2*I*66^(1/2))-13500*x^4-64800*x^3+48030*x^2+125130*x+45540)/(30*x^3+23*x^2-7*x-6)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (5 \, x + 3\right )}^{\frac {3}{2}} {\left (3 \, x + 2\right )}^{\frac {3}{2}}}{{\left (-2 \, x + 1\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(3/2)*(3+5*x)^(3/2)/(1-2*x)^(3/2),x, algorithm="maxima")

[Out]

integrate((5*x + 3)^(3/2)*(3*x + 2)^(3/2)/(-2*x + 1)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (3\,x+2\right )}^{3/2}\,{\left (5\,x+3\right )}^{3/2}}{{\left (1-2\,x\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((3*x + 2)^(3/2)*(5*x + 3)^(3/2))/(1 - 2*x)^(3/2),x)

[Out]

int(((3*x + 2)^(3/2)*(5*x + 3)^(3/2))/(1 - 2*x)^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**(3/2)*(3+5*x)**(3/2)/(1-2*x)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________